SHORT COMMUNICATIONS

to 2z, and so on. A simple clutch enables the operator to
reverse the direction of motion of the cursor so that
cos 2mr( — k) x can be obtained. from the same angle setting.

The ratchet mechanism for moving the cursor consists
of a hardened polished C-shaped steel double pawl pivoted
in a recess in the operating and stop-carrying ring, and is
sprung with two leaf springs. Either of the directionally
opposed pawl faces can be brought into position to engage
with the ratchet teeth of the cursor, to transport it in
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either direction, by shifting the pressure of the leaf
springs on the pawl by means of two knurled knobs which
control the spring positions.

The contribution of an atom ¢ to the geometrical
structure factor of the form cos 27 (hx; +12;) is computed
along lines in the reciprocal lattice, say for constant I, by
setting the angle stop to z, advancing the cursor to Iz,
and successively determining cos 27 (hx; +1z;) from 0 to A,
and from 0 to —h.

An obvious improvement is the inclusion of a second
and third angle stop to hold the values of ¥ and z. If
such stops Y and Z are to be added, then X, ¥ and Z
must be capable of being swung out so as not to interfere
with one another.

In its present form the device has been found fully
accurate and reliable in the summation of (hx+12). It
has been most useful in the (three-dimensional) analysis of
phenazine and the (two-dimensional) analysis of tetra-
benznaphthalene (7 and 26 atoms in the asymmetric unit
respectively), which are now being carried out in this
laboratory. Two hundred F’s of the form cos 2w (hx;+Iz;)
of 26 atoms have been computed in 16 working hours.

It is a pleasure to thank the chief instrument maker of
the Weizmann Institute, Mr B. Feldmann, for designing
and constructing this instrument.

An orthorhombic variety of chrysotile. By E. J. W. WHITTARER, Research Division, Ferodo Ltd., Chapel-en-le-

Frith, Stockport, England

(Recetved 29 November 1950)

The structure of chrysotile asbestos has been studied by
Warren & Bragg (1930), Gruner (1937) and Aruja (1943).
Although the detailed structural conclusions of these
workers have differed, they have all agreed that the
structure is based on a monoclinic cell having the approxi-
mate parameters

=146, 5=9-2, ¢=532A., £=93°12,

or simple multiples or submultiples of these a and b
axial lengths.

It appears from the literature that these results were
all obtained using specimens from Thetford, Quebec.
More recentiy Padurow (1950) has eclaimed that the
structure is only pseudo-monoclinic and is really triclinic
with cell parameters

a=1736, b=926, ¢=533A,
a=92°50°, B=93°11/, y=89°50".
The chrysotile used in this work was also from Quebec.

As a result of & survey of specimens from a variety of
sources in Canada, Rhodesia, Swaziland, India and
Australia the author has found that the diffraction
patterns obtained differ quite extensively. Certain of
these differences have already been reported (Whittaker,
1949), but at the time the nature of the corresponding
structural differences had not been ascertained. It has
now been found that the photographs may be explained
on the assumption that the specimens consist of mixtures,
in different proportions, of the normal monoclinic variety

(or pseudo-monoclinic according to Padurow) and a new
orthorhombic variety with substantially identical unit-
cell dimensions. Chrysotile from Canadian sources does
not appear to contain any of the orthorhombic variety,
which accounts for this not having been observed by
previous workers. The other sources mentioned yield
material of varying ortho content both as between sources
and as between different specimens from the same source.
This content varies from zero up to a value which is still
uncertain, but is probably more than 509%. No evidence
has been found of fluctuation in this proportion when a
specimen is repeatedly halved in cross-section down to a
diameter of about 0-05 mm., so that the two varieties are
very finely dispersed, quite probably as individual fibrils.

The diffraction phenomena given by ortho-chrysotile
closely resemble those given by the clino variety. Similar
restrictions exist on the indices of the observed reflexions,
and similar diffuse streaks are obtained. Owing to the
restrictions on the indices of the observed reflexions, the
relationship between the unit-cell dimensions, and the
diffuse scattering on the odd-order layer lines, the zero-
and odd-order layer lines of the two varieties are practically
identical; but the difference is seen clearly on the even-
order layer lines, owing to the different positions of the
hOl reflexions of the two varieties. There are also notable
differences between the varieties in other respects.
Whereas in clino-chrysotile k0l reflexions are very weak
for % odd, in ortho-chrysotile there is no restriction on %
for strong reflexions with 7 even. Also, the proportion of
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material in ‘abnormal orientations’ (Aruja, 1943), that is,
with the fibre axis parallel to the directions [010] or [013],
is either zero or very much smaller than in clino-chryso-
tile. It is notable that Hargreaves & Taylor (1946) found
variations between Canadian and Rhodesian fibres in
respect of the subsidiary layer lines, which are produced
by the material in the abnormal orientations.

Further work is in progress on the structure of ortho-
chrysotile and its bearing on the general problems of
chrysotile structure.

My thanks are due to the Directors of Ferodo Limited
for permission to publish this communication.
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A note on the solution of the structure-factor equations. By J. Karie and H. HauvptmaN, U.S. Naval

Research Laboratory, Washington, D.C., U.S.A.

(Received 25 September 1950)

The crystal-structure problem for N point atoms per unit
cell is the problem of solving for the atomic co-ordinates,
x5, Y55 2; (=1, 2, ---» ) the system of equations

N
Frn= .Zlfj(h, k, 1) exp [—2mi(ha; + ky; +1z5)], (1)
]=

where #, k, ! take on various integral values. The f;(k, k, )
and only the magnitudes | F'y;, | of the complex structure
factors F'y, are known from experiment. It can be shown
that only the differences z,—x,, y,—¥,, z,—2, are then
determined by (1), and that 3 (N — 1) independent magni-
tudes | F, | are sufficient to determine the solution
(Hauptman & Karle, 1950).

In previous papers (Avrami, 1938; Hauptman & Karle,
1950), solutions to this problem have been obtained which
require more than the algebraic minimum of data. It is
the purpose of this note to show how the solution using
the minimum of data may be found in principle. This
solution is not developed in detail since it is very complex
and appears to be unsuited for practical computation.

Each equation of (1) is multiplied by its complex con-
jugate, yielding

N
I Fhkl |2=22f,;(h, kv l)fv(h’ k’ l)
y 224

x exp {— 2milh(2,~x,) + Ky, —y,) + Uz, —2,)1} (2)
By making the substitution
gy =exp[— 2777:2/4]’ Np=©xp [- 27”2'//;]»
and §,=exp [~2miz,],
the system (2) becomes a set of algebraic equations. This
system of equations may be solved by algebraic elimina-

tion theory as follows:
Given a set of n polynomials in » unknowns,
gi(wy, Wy, ...y wy),
it is possible to replace the system of » equations, g;=0,
by a single algebraic equation involving one of the un-
knowns (van der Waerden, 1940). The roots of this
algebraic equation are the possible values of this unknown.
The equation is obtained in the following fashion. First we
state the necessary and sufficient condition that a system
of n equations in one variable, ¢,(w)=0, :=1,2, ..., n,

t=12,...,n,

have a common root. Let the degree of the equation of
highest degree be equal to m. Muitiply each polynomial g,
of lower degree m; by w™ i and by (w—1)"—7i, thus
obtaining a new system of polynomials which we adjoin
to the polynomials of degree m. This results in a new
gystem of polynomials k;, 1=1, 2, ..., p, each of degree m.
Clearly, if all the original polynomials are of degree m,
then p=n; otherwise p>n. Next, the linear com-
binations hy=uhy+ ... +u,,h,,} 3)
hy=vihy+...+v,h,,

are constructed which, when rearranged, are seen to be
polynomials in w, and the w’s and v’s are independent

variables. These polynomials may be written
hy=ayw™+a,wm 4. +ay,,

S (4)

hy=byw™+bwm™14.,..+b,,

where the a’s and b’s are seen to be linear combinations
of the u’s and v’s. The resultant of these two polynomials

s a, a; Qg ... a, 0 0 ... 0
0 a a .. Apy @y 0 ... O
| 0 0 0 ..@a a; as ... a,
B= b b b .b, 0 0..0|®
0 b b .. b1 b O ... O
0 0 O ...b b by by ... by,

which must be identically equal to zero, i.e. the coefficient
of each power 4y’ must be equal to zero. We obtain in
this way a system of polynomials on the coefficients of
the g; which, when set equal to zero, are necessary and
sufficient conditions that the original system of equations
have a common root. This procedure, when used with the
system of n equations in 7 unknowns

gi(wy, wy, ..., w,)=0, 2=1,2, ..., 70,

may be applied repeatedly to eliminate successively each
of the variables until we are left with one equation in one
unknown, whose roots yield possible co-ordinates of one
of the atoms. The main drawback of this procedure is
the great complexity of carrying out the operations in-
volved in successive eliminations.



